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OVERVIEW

Timeline Barriers
Project Start: October 2017 » Complexity of urban scale
Project End: September 2020 networks are too large to model
15% complete In reasonable compute time

» Ingestion and understanding of
real-world data in near real-time

» Optimization of energy
productivity and mobility across
complex networks

Budget
Total project funding: Partners
$6M / 3 years PNNL, ANL, ORNL
- Connected Corridor, UCB,
$2M per year / 4 National Labs CalTrans
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RELEVANCE

» Overall Objective: Support the EEMS program mission to create new knowledge,
tools, insights, and technology solutions that increase mobility energy productivity
for individuals and businesses by:

— Developing the High Performance Computing tools to rapidly model large
scale transportation networks using real-world, near real-time data.

— Integrating energy, productivity and mobility measures to determine
optimization opportunities.

» Objectives this period:
* Identify appropriate modeling tools (e.g. deep learning) and platforms.

« Demonstrate HPC transportation model for capturing urban scale traffic
dynamics.

« Estimate the energy cost and productivity loss of congestion.
« Analyze real-world sensor data to estimate network demand.
» Impact:

« Develop new control ideas for optimizing energy, productivity and mobility for
normal traffic conditions and network stress conditions
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WORK BREAKDOWN

Define appropriate role
of HPC, ML and big data
analytics in
transportation problem
domain.

Develop the data
science and an
HPC supported
computational

framework for
building next-
generation
transportation/
mobility system
models and
operational
analytics

Automate the collection
and validation of real-
world transportation
data.

—>

Develop asynchronous
distributed state HPC
transportation network
models.
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Couple automated data
ingestion, learning
systems and large scale
modeling in a full urban

scale modeling platform.
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Identify key transportation specific HPC technology gaps
Define HPC transportation system architectures

Define and access real-world datasets
Define data veracity analytics for real-world data

Identify key transportation specific HPC-ML tools within
National Lab system

Evaluate LSTM ML as a mechanism for analyzing geospatial
temporal data

Stable, automated data ingestion with coupled analytic and
ML models

Develop ML models for estimating energy use

Develop asynchronous distributed state HPC modeling tools

Customize asynchronous distributed state models for
transportation network specific capabilities

Energy tracing through HPC enabled models

Develop HPC dynamic traffic assignment modeling

Define tool integration path and architecture

Argonne°
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MILESTONES

FY18 FY19 Status
WBS Task PrimaryRl | Q1 | Q2 | Q3 | Q4 Ql Q2 | Q3 | Q4
0 Project Coordination Berkeley
1 Define appropriate Role of HPC, ML, and big data analytics for transportation Berkeley
M1.3.1 |Complete deployment of initial HPC and HPC-ML toolset as appropriate PNNL X Complete
2 Automated Transportation Data: Veracity, Velocity, and Geospatial-Temporal
M2.1.2 |Establish organizationally efficient data access process Berkeley X On Track
M2.2.2 |Select initial HPC-ML tools PNNL X Complete
M2.3.1 |Select initial training dataset from Connected Corridor ANL X Complete
M2.3.2 |Demonstrate viability of LSTM neural architecture for G-T data ANL On Track
M2.5.2 |Define path for integration of energy models into HPC framework ORNL X Complete
M2.5.3 |Evaluate efficacy of ML approach and impact of data veracity on energy estimates |ORNL On Track
3 Develop asynchronous distributed state HPC transportation network models Berkeley
M3.2.2 |Demonstrate asynchronous distributed state model on large scale network Berkeley Satisfied
M3.3.2 |Develop data transfer approach to integrate optimization models X On Track
M3.3.3 |Demonstrate HPC dynamic traffic assignment (DTA) modeling X On Track
4 Couple automated data ingestion, learning systems and large scale modeling
M4.1.1 |Preliminary dataflow diagram X On Track
4.2.1 MaTEx deployed at all labs All X Complete
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APPROACH : Mobility Modeling & Optimization

. Input to Models
Automated Data Ingestion p ' Rapid Network Simulation
> Veracity  Fusion Model Network Dynamics
Patterns Analytics

e ; Congestion
R e Feedback to Eneray, Mobilty, Productivity

Connected improve ingestion

Corridor,
Los Angeles Data Science Network Modeling and Simulation
UCBerkeley Statistics Computational Tools  Parallel Discrete Event Simulation

CalTrans Machine Learning Traffic Assignment

LA Metro Predictive Analytics

m 8

High Performance Computing

Develop high-speed HPC enabled ik e W

tools that will create actionable System Control and

control predictions at the network Learnings Optimization
level
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APPROACH : Tool Layer

Simulated
Impacts
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for Complex
DeltaRho,
Trelliscope,

Filterin Dynamics
& Intelligent w
Visuali J

LYy /ensorFlow
MaTEx-Keras

StreamK ki

Intelligent
Data
Compression Scale

Application

Extreme
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Energy Modeling

Systems Modeling & Simulation
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ACCOMPLISHMENTS:

Promising Spatial & Temporal Techniques

A multi-layered approach incorporating both temporal and spatial learning

Temporal Layer

- - Predictions

t t t
| i |
Htl)  HE2)  H(t3)
t t t
LSTM * LSTM » » LSTM » LSTM » LSTM » LSTM
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Spatial Layer Graph Convolutional Network
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X(t-X) X(t-1)  X(t)
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ACCOMPLISHMENTS:

Hyper-parameter Search for LSTM

LSTM Traffic POC on Theta at Argonne’s ALCF
* LSTM hyper-parameter tuning POC running at increased scale
» 256 nodes; each node evaluates a deep neural network

Unevaluated parameter

configurations
oo hyperparameter search; 256 nodes on theta@ALCF
Learning model .
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Example Surrogate Model Fitted to Sampled
Performance
(iterative refinement improves the learning model)
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ACCOMPLISHMENTS: Single Station LSTM Based

Speed & Flow Estimation POC

prediction: average speed; ahead = 60 mins

R Mean Absolute Error =
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ACCOMPLISHMENTS:

Actor-Based Traffic Model Representation

» Actor-based model: links are actors, vehicles are propagated through the system
via events passed between actors

« Event signals the arrival of a vehicle at a link at some time T
« Link actor mediates the congestion experienced by each vehicle traversing the link

» Link computes vehicle traversal time and schedules an event for the vehicle’s
arrival at the next link actor in the vehicle’s path at time T,

S (V) = ta (1 +0.15 (2—)4)

Send Event: T, = T, + S,(v,) Link Actor Receive Event: T,

el

sl Berkele ~ % OAK RIDGE Argonne° 1

BERKELEY LAB UNIVERSITY OF CALIFORNIA y PalelC NOrt hweSt I - National L:lbor:l(or_v

llllllllllllllllll



ACCOMPLISHMENTS:

Optimistic Parallel Discrete Event Simulation

« Simulation is parallelized by splitting links across multiple computer
nodes/processes/threads to logical processors (LPS)

* Vehicles traverse between LPs and must be communicated across the network

Conservative PDES:
Requires every rank
to be synchronized to
a global time step

Optimistic PDES:

Allows ranks to execute
without synchronization and
enforces causality by rolling
back mis-speculatively
executed events

Reduce communications
and rollback by multi-

Intelligent Geospatial Partitioning of .. o :
the Network Graph objective partitioning of link

actors based on event load
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ACCOMPLISHMENTS: Urban Scale Flow Modeling
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APPROACH: Four Part Vehicle Energy Model

Objective: Estimate/predict fuel (energy) consumption for
each vehicle on each path segment.

» Determine resistant force E.(v),
» Determine the vehicle traction force, F;(v)

« Determine fuel rate characteristic map,
c(v) = f(F:(v), v), using ANL datasets

« Compute fuel consumption rate for each vehicle
based on the velocity in Mobiliti

Dynamometer

Data fittin 2D Looku
Test Data and tuning Table °
(ANL)
Timestamp Dyno Speed Dyno Tractive Fuel flow
[sec] [mph] Effort [N] [ccls] c = f(F,(v) v
38.1 10.486429 112.832683 0.37709 f ( t( )' )
38.2 10.488464 132.010357 0.392381
38.3 10.487446 135.984109 0.420566
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ACCOMPLISHMENT: Four Part Vehicle Energy Model

Compute fuel consumption rate vehicle Replication
f P h - P Model % of Fleet Factor
or each agent. 2012 Focus 10%
For the trip n, the total fuel 2012 Altima 10% 8
consumption e, = 2012 F-150 5%
l l l
Liepath f(Ft(vn): Un) T 105
o * EFuel jon with congestl
uel consumption with congestion
For the road ||nk i’ the 16 b " ”:EF::LZO:gestﬁmwlmoutcoggastlon i
. tional fuel: 3.
accumulated fuel consumption 14t
. . d I
E; = Znen, f(Fe(vn)vn) - 3 >
) " ) E‘m I Additional fuel: 37,879 L
where d; is the length of road link S sl Additional fuel: |
i, v}, is the velocity of trip n 2.l 2amatl
through link i, N; denotes all the Al
trips through link i. |
o Ford Focus (10%)  Nissan Altima (10%) Ford F-150 (5%)
T, 7
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ACCOMPLISHMENTS: Urban Scale Productivity Impact

productivity loss ($)

1500

1000

500

Loss (§) Loss ($

Loss ($)

top-n link

T T
1st productivity loss link: 2107999 i
1 1
0 06:00:00 12:00:00 18:00:00 24:00:00
T T T
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1 I L
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T T T
| 3rd productivity loss Iin% |
| 1
0 6:00:00 12:00:00 18:00:00 24:00:00
25 x10°
ol Total daily loss: $ 6.26 million
151
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0
time index
0
¢ o @ 0T e
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» Time-varying loss of productivity across top links P R
o

« Up to $2000 loss per 15 mins on the top congested links

» Total daily loss is more than $6 million
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ACCOMPLISHMENTS: Deployed HPC Enabled Machine

Learning Platform (MaTEXx)

« MaTEx is a collection of parallel machine learning and data mining (MLDM)
algorithms for desktops, supercomputers and cloud computing systems.

« MaTEXx provides high performance
implementations of DL algorithms

» Google TensorFlow as the baseline
» MPI for inter-node communication

» multi-threading/CUDA (cuDNN) for intra-node
execution
MaTEx-TensorFlow Code Original TF Code

| import tenscrflow as tf tensorflow as tf

| import
2 dimport numpy as np 2 import numpy as np
3 3 &
4 frow datasets import DataSet 4
5 2 5
6 image_net = DatasSet(...) 6
7 data = image_net.tralning data 7 data = ... # Load training data
8 labels = image net.training labels 8§ labels = ... ¢ Load Labels
9 T 9 BN
10 § Setting up the network 10 & Setting up the network
11 11 S
12 ¥ Setting up optimizer 12 ¢ Setting up optimizer
13 S 13
14 init = tf.qlobal_variables_initializer(} 14 init = tf.qlebal_variables initiallizer(|
15 sess = tf.Session() 15 sess = tf.Seasion()
16 sess.run(init) 16 sess.run(init)
17 S8 17 S8
18 ¢ Run training regime 18 ¢ Run training regime

Supports automatic distribution of HDF5, CSV, PNetCDF formats

eeasif b2
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1) Open source software with users in academia, laboratories and industry

2) Supports graphics processing unit (GPU), central processing unit (CPU) clusters/
LCFs with high-end systems/interconnects

3) Machine Learning Toolkit for Extreme Scale -MaTEx: github.com/matex-org/
matex

— 12

 MaTEXx also supports

* K-means

Spectral Clustering algorithms for clustering
Support Vector Machines

KNN algorithms for classification
FP-Growth for Association Rule Mining.
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COLLABORATION AND COORDINATION

National Laboratories : HPC Modeling

el Berkele =7 % OAK RIDGE Argonneo
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Government and Academia : Infrastructure Data

Connected Corridor, University of California Berkeley
CalTrans, LA Metro, LADOT

Industry : Mobility Data

GPS Data for Connected Corridor Region

UBER | TAZ Movement Data / Validation

=== 2
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REMAINING CHALLENGES AND BARRIERS

» Acquisition of urban scale mobility data

» Development of learning models for sparse and low
guality data sets

» Data fusion mechanisms for creating improved demand
models from real-world data

> Extension of small scale models to full urban scale
models

» Development of learning models for large scale networks

BUDMBI Berkeley Pacific N ~ % OAK RIDGE Argonne° 19
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FUTURE RESEARCH

» Characterizing real-world mobility demand using automated, data-fusion ML
models

» Use of simulator to create emergent behaviors:

= Extend models and simulator to investigate impact of more intelligent
transportation system agents — dynamic routing.

» Investigate impact of induced agent rerouting as a result of a network
change

» Impact of routing and control algorithms on energy, productivity and mobility
measures with more sophisticated network representation, eg. improved
map information

» Improved performance of the simulator to generate data sets for machine
learning algorithms for the purpose of creating large scale network
characterizations

» Investigate the use of resultant models in real-time decision making

Any proposed future work is subject to change based on funding levels
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SUMMARY

S \e N » Urban-scale model for investigating
TR kS SR VL impact of mobility dynamics running on
AN ‘ ; \\ f L.f‘ HPC
el RO\ AL = Capable of running large network
o Ephe a0y A .
W R {:f and demand (2M links, 7M agents)
PR Ny In minutes
R = Energy model under development
Y e\ = Economic cost model in place
TR, > Machine Learning approach to
. R estimating speed and flow from real-
prediction: average speed; ahead = 15 mins .
world data - allows for understanding
T | and modeling true dynamics
5 > HPC enabled tool chain in place to
g — create integrated problem solutions
—— ODbserve
» —— predicted
o =7 21
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Technical Back-Up Slides
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APPROACH: Functional Layer with Analytics

Sensor fusion, Simulated
Signal filling Impacts
for Complex
Dynamics

Filtering,
& Intelligent Modeling

Semantic |
Tuning

Energy Impact

: High Performance Computing Visualization
DReaI-WorId ‘B,'g Data for Al, Machine Learning,
ata Sources eracity Deep Learning Recommended Control

Event detection, Role of Human in the Loop

A Metering ramp
Pattern
. - G tial, . atterns,
Slgnal tlmlng at Teeo"s‘zsrlaal Extraction |mr;ge scene
art.erial ramps, Analytics Semantic analytics
Video feeds, Feature VMT modeling,
GPS probe Intelligent Extraction Emissions,
. data,I . Data Energy use,
nductive loops . Fleet model
Compression s
p : High Performance

Computing Network
Modeling and Energy
Tracing

Probe analytics,
Congestion
metrics,
Flow

estimation,
Sensor fusion,
Sensor health

evaluation
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